
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 29: 289–309 (1999)

SIMULATION OF FREE AND FORCED CONVECTION
INCOMPRESSIBLE FLOWS USING AN ADAPTIVE

PARALLEL/VECTOR FINITE ELEMENT PROCEDURE

P.A.B. DE SAMPAIOa,* AND A.L.G.A. COUTINHOb

a Instituto de Engenharia Nuclear, Comissão Nacional de Energia Nuclear, Rio de Janeiro-RJ, 21945-910, Brazil
b Programa de Engenharia Ci6il-COPPE, Uni6ersidade Federal do Rio de Janeiro, Rio de Janeiro-RJ,

21945-970, Brazil

SUMMARY

The numerical simulation of complex flows demands efficient algorithms and fast computer platforms.
The use of adaptive techniques permits adjusting the discretisation according to the analysis require-
ments, but creates variable computational loads that are difficult to manage in a parallel/vector program.
This paper describes the approach adopted to implement an adaptive finite element incompressible
Navier–Stokes solver on the Cray J90 machine. Performance measurements for the simulation of free
and forced convection incompressible flows indicate that the techniques employed result in a fast
parallel/vector code. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: Petrov–Galerkin methods; incompressible flow; Navier–Stokes equations; parallel/vector computa-
tions; adaptive methods

1. INTRODUCTION

Analytical solutions of fluid flow problems are restricted to a few situations where simplified
models and hypotheses are applicable. In order to match the engineering needs to deal with
flows of industrial complexity, numerical and experimental techniques are required. Though
the laboratory and the computer have been complementary tools in understanding fluid flow
phenomena, one can clearly identify the growing importance of computational fluid dynamics
(CFD) in the technological development of recent decades. The expanding role played by
numerical analysis of flow problems is prompted by economical reasons, which are in turn
connected to the development of computer technology and new solution algorithms.

This paper addresses the adaptive simulation of free and forced convection incompressible
flows with special emphasis on the efficient use of the parallel/vector resources of the Cray J90
machine. The continuum model is based on the incompressible Navier–Stokes equations,
written in primitive variables, and includes the Boussinesq approximation of thermally induced
buoyancy forces. This class of flow problems is important in various branches of engineering
and, in particular, in the design and safety analysis of the heat transfer equipment of nuclear
power plants.

* Correspondence to: Instituto de Engenharia Nuclear, Comissão Nacional de Energia Nuclear, Rio de Janerio-RJ,
21945-910, Brazil.

CCC 0271–2091/99/030289–24$17.50
Copyright © 1999 John Wiley & Sons, Ltd.

Recei6ed No6ember 1996
Re6ised March 1998



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO290

Two major difficulties arise when attempting to solve the incompressible Navier–Stokes
equations in primitive variables. The first arises due to the presence of convective terms that
render these equations non-self-adjoint. For convective problems, the Galerkin method loses
the best approximation property [1] and consistent Petrov–Galerkin formulations, which
successfully supersede the Galerkin method, have been derived and used in the analysis of
convection-dominated flows [2,3]. The second difficulty is the need to choose compatible
interpolations for velocity and pressure when using the standard mixed formulation, as
dictated by the Babus' ka–Brezzi condition [4]. Indeed, this condition rules out the use of
equal-order interpolation for all variables, which would be attractive from a computational
point of view. Here again, the utilisation of Petrov–Galerkin formulations is advantageous,
and stable solutions can be obtained for equal-order spatial interpolation of the primitive
variables [5–7]. In Section 2, the symmetric Petrov–Galerkin formulation, applied for the
discretisation of the incompressible Navier–Stokes equations and for the fluid energy balance
[8], is presented. The method automatically introduces streamline upwinding [3] and permits
equal-order interpolation for velocity and pressure.

Accurate, and yet affordable, computation of complex flows demands the use of adaptive
solution techniques. Adaptive solution procedures, combining mesh and time step control, are
described in Sections 3 and 4. These include remeshing, based on the Zienkiewicz and Zhu
error estimator [9], and the use of local time steps defined by the local velocity, physical
properties and mesh size [10,11]. Such techniques are effective on adjusting the discretisation
according to the physics of the underlying problem. However, they create variable computa-
tional loads that make them difficult to implement with efficiency in parallel/vector
supercomputers.

The parallel/vector implementation on the Cray J90 installed at COPPE/UFRJ is described
in Section 5. A dynamic mesh colouring scheme is applied to the computational meshes in
order to split the finite elements into groups that can be processed in parallel/vector mode
within an element-by-element (EBE) preconditioned conjugate gradient solver [12,13].

Finally, adaptive simulations of some representative free and forced convection flows are
presented in Section 6. Performance measurements on the Cray J90 demonstrate the effective-
ness of the numerical techniques employed.

2. THE CONTINUUM AND DISCRETE MODELS

The finite element formulation used for the simulation of incompressible viscous flows with
heat transfer is presented. The problem is defined on the open-bounded domain V, with
boundary G, contained in the nsd-dimensional Euclidean space. The continuum model
comprises the incompressible Navier–Stokes equations and the transient energy balance. The
Boussinesq approximation of buoyancy forces is used to model free and mixed convection
flows.

The governing equations are written using the summation convention for a=1, . . . , nsd and
b=1, . . . , nsd, in Cartesian co-ordinates, as

r0
�(ua

(t
+ub

(ua

(xb

�
−
(tab

(xb

+
(p
(xa

+r0bgau=0, (1)

((r0ua)
(xa

=0, (2)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 291

r0c
�(u
(t

+ub

(u

(xb

�
+
(qb

(xb

=0, (3)

where the viscous stress and the heat flux are given by

tab=m
�(ua

(xb

+
(ub

(xa

�
(4)

and

qb= −k
(u

(xb

(5)

respectively.
In the above equations, ua, p and u denote the velocity, pressure and temperature fields. The

fluid density at u=0 is represented by r0. Note that c, m, k, b are respectively, the fluid
specific heat, viscosity, thermal conductivity and thermal expansion coefficient. The gravity
field Cartesian components are denoted by ga.

The model is completed by introducing boundary conditions and initial velocity and
temperature fields. Velocity and traction boundary conditions are prescribed on the partitions
Gua and Gta, such that Gua@Gta=G and GuaSGta=¥, as

ua= ūa(x, t) x�Gua, (6)

(−pdab+tab)nb= t( a(x, t) x�Gta, (7)

where dab is the Kronecker delta and nb denotes the outward normal vector at the boundary.
Temperature and heat flux boundary conditions are prescribed on the partitions Gu and Gq,

such that Gu@Gq=G and GuSGq=¥, as

u=u( (x, t) x�Gu, (8)

qbnb= q̄(x, t) x�Gq. (9)

Pressure and mass flux boundary conditions are associated with the mass balance. They are
prescribed as p̄ and G( on boundary partitions Gp and GG such that Gp@GG=G and
GpSGG=¥, according to

p= p̄(x, t) x�Gp, (10)

r0ubnb=G( (x, t) x�GG. (11)

Note that the incompressible flow model (Equations (1)–(3)) involves pressure gradients but
not pressure itself. Thus, at least one reference pressure value must be prescribed in order to
define a unique pressure field.

The model presented in this section describes laminar and turbulent incompressible flows of
Newtonian fluids. It includes thermally induced buoyancy forces that render it suitable for the
analysis of free and mixed convection problems. As far as turbulent flows are concerned, the
difficulty is related to the characteristic time and length scales of turbulence. Although these
are large enough for the continuum hypothesis to remain valid, they are too small to be resol6ed
by an affordable discretisation. Therefore, a turbulent analysis requires recasting the model
through the use of Reynolds-averaged conservation laws and pseudo constitutive equations (the
so-called closure models). This work shall not deal with such flows, but it is anticipated that
the discretisation and solution techniques to be described next apply to most Reynolds-aver-
aged turbulent models and large eddy simulation procedures currently used.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO292

2.1. The symmetric Petro6–Galerkin formulation

The continuum model is discretised using standard C0 finite elements of equal-order to
approximate velocity, pressure and temperature. Such a choice of interpolating spaces is not
acceptable within the mixed formulation framework, as it violates the Babus' ka–Brezi condi-
tion [4]. However, the Petrov–Galerkin formulation presented avoids this difficulty through
the introduction of extra stabilising terms [5–7]. The formulation also leads to adequate
approximations of convection-dominated flows, for it generates streamline upwinding [3].

In order to derive the method, the momentum and energy-squared residuals are defined as

S=
&

V
F. aF. a dV, (12)

R=
&

V
E. 2 dV, (13)

where

F. a=r0
�û a

n+1− û a
n

Dt
+ û b

n (û a
n+1/2

(xb

�
−
(tab

n

(xb

+
(p̂ n+1/2

(xb

+r0bgau. n (14)

and

E. =r0c
�u. n+1−u. n

Dt
+ û b

n (u. n+1/2

(xb

�
+
(qb

n

(xb

. (15)

In the above equations, ûa, p̂ and u. are the discretised fields, interpolated using element
shape functions denoted by Ni. The velocity, pressure and temperature nodal values are
represented by uai, pi and ui respectively. The superscripts n, n+1/2 and n+1 indicate the time
level and Dt is the time step. Note that the viscous stress and heat flux contributions are taken
at level n. For the time being, no particular spatial discretisation for tab

n and qb
n will be specified

and the viscous and heat flux contributions will be treated as source terms.
The minimisation of the squared momentum residuals (12) and (13) with respect to the free

nodal variables at level n+1 leads to the following weighted residual equations:&
V

�
Ni+

Dt
2

uc
n (Ni

(xc

�
F. a dV=0 Ö free uai

n+1, (16)

&
V

Dt
(Ni

(xa

F. a dV=0 Ö free pi
n+1, (17)

&
V

�
Ni+

Dt
2

uc
n (Ni

(xc

�
E. dV=0 Ö free u i

n+1. (18)

The traction and heat flux boundary conditions given by Equations (7)–(9) are approxi-
mated by&

Gta

Ni(− p̂ n+1/2dab+tab
n )nb dG=

&
Gta

Nit( a dG (19)

and &
Gq

Niqb
nnb dG=

&
Gq

Niq̄ dG. (20)

Using Equations (19) and (20), Equations (16) and (18) yield respectively,

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 293&
V

r0

Dt
�

Ni+
Dt
2

uc
n (Ni

(xc

��
ua

n+1+
Dt
2

û b
n (û a

n+1

(xb

�
dV

=
&

V

r0

Dt
�

Ni+
Dt
2

û c
n (Ni

(xc

��
û a

n−
Dt
2

û b
n (û a

n

(xb

�
dV+

&
V

(Ni

(xa

p̂n+1/2 dV

−
&

V

Dt
2

û c
n (Ni

(xc

(p̂ n+1/2

(xa

dV−
&

V

(Ni

(xb

tab
n dV+

&
Gta

Nit( a dG

−
&

V

�
Ni+

Dt
2

û c
n (Ni

(xc

�
r0bgau. n dV+

&
V

Dt
2

û c
n (Ni

(xc

(tab
n

(xb

dV, Ö free uai
n+1 (21)

and &
V

r0c
Dt

�
Ni+

Dt
2

û c
n (Ni

(xc

��
u. n+1+

Dt
2

û b
n (u. n+1

(xb

�
dV

=
&

V

r0c
Dt

�
Ni+

Dt
2

û c
n (Ni

(xc

��
u. n−

Dt
2

û b
n (u. n

(xb

�
dV+

&
V

(Ni

(xb

qb
n dV−

&
Gq

Niq̄ dG

−
&

V

Dt
2

û c
n (Ni

(xc

(qb
n

(xb

dG, Ö free u i
n+1. (22)

An equation for pressure is obtained combining the mass conservation equation (2) and
Equation (17), which states the minimisation of the squared momentum residuals with respect
to the pressure degrees of freedom,&

V
Dt
(Ni

(xa

F. a dV+
&

V
Ni

((r0û a
n+1)
(xa

dV=0, Ö free pi
n+1. (23)

Using the mass flux boundary condition (11) and taking the convective term in F. a at the
time level n, Equation (23) becomes a Poisson equation relating pressure to the mass and
momentum balances,&

V
Dt
(Ni

(xa

(p̂ n+1/2

(xa

dV= −
&

V
Dt
(Ni

(xa

r0û b
n (û a

n

(xb

dV−
&

V
r0Ni

(û a
n

(xa

dV+
&

V
Dt
(Ni

(xa

(tab
n

(xb

dV

−
&

V
Dt
(Ni

(xa

r0bgau. n dV−
&

GG

Ni(G( n+1−G( n) dG, Ö free pi
n+1.

(24)

At this point, the spatial discretisation of the viscous and heat flux terms in Equations (21),
(22) and (24) must be introduced. Based on Equations (4) and (5), these quantities are
expressed in terms of the discretised velocity and temperature fields as:

t̂ab
n =m

�(ûa

(xb

+
(ûb

(xa

�n

(25)

and

q̂ b
n= −k

(u. n

(xb

. (26)

It is important to remark that with the above approximations, the equivalence between
Equations (21), (22) and (24) and the least-squares method is lost. This is due to the
occurrence, in Equations (12) and (13), of second-order spatial derivatives of the primitive
variables (velocity and temperature), which can be represented inside the finite elements, but

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO294

not across element interfaces. In the formulation adopted here, the viscous and heat flux
contributions to Equations (21), (22) and (24) are evaluated on element interiors by Equations
(25) and (26), following a procedure that has become standard in the context of Petrov–
Galerkin formulations [3,14].

Note that the implementation of the least-squares method would require either recasting the
problem in terms of first-order spatial differentials, with the introduction of new dependent
variables, or employing C1 shape functions to interpolate velocity and temperature. Although
no longer equivalent to the least-squares method, the Petrov–Galerkin formulation presented
above inherits from the former, the important mathematical properties of symmetry and
positi6e definiteness, whilst retaining the use of simple C0 shape functions and the primitive
variables approach. In this work, the symmetric Petrov–Galerkin formulation is applied to the
simulation of 2D problems, using linear triangular elements to approximate velocity, tempera-
ture and pressure.

The problem is solved using a segregated solution procedure. Pressure is computed first,
then the velocity and the temperature fields are updated. Equations (21), (22) and (24) lead to
symmetric positive definite matrices, allowing the use of preconditioned conjugate gradient
solvers. The implementation of an EBE parallel/vector conjugate gradient procedure will be
discussed in Section 5.

3. THE LOCAL TIME STEPPING SCHEME

The weighting functions applied to the momentum and energy balances, Equations (16) and
(18), have the streamline upwind Petro6–Galerkin structure [3],

Wi=Ni+
Dt
2

û c
n (Ni

(xc

. (27)

For linear elements, a proper amount of streamline upwinding is introduced in the momen-
tum balance, choosing the time step as

Dt=
�

coth
�Re

2
�

−
2

Re
n he

un, (28)

where un is the velocity modulus and he is the characteristic element size (the square root of
the element area). The element Reynolds number Re is formed using un and he.

It is interesting to note that the time step given by Equation (28) is appropriate to follow the
time evolution of the convection–diffusion processes resolvable in a mesh with size he (De
Sampaio [6]). Indeed, Equation (28) gives for the pure convection limit, i.e. Re��,

Dt=he/un, (29)

whereas for pure diffusion (Re=0), it yields

Dt=rhe
2/6m. (30)

The relationship between the time step given by Equation (28), also called the intrinsic time
scale, and the modelling of the subgrid (or unresolvable) scales was investigated by Hughes
[15].

In order to introduce optimal upwinding in the fluid energy equation, the element Reynolds
number in Equation (28) must be replaced by the element Peclet number Pe=Re Pr, where
Pr=mc/k is the Prandtl number. Clearly, unless Pr=1, the time scales for the momentum and

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 295

energy equations will differ. Furthermore, note that the time step given by Equation (28) varies
spatially according to local values of velocity, physical properties and mesh size. If optimal
upwinding is to be introduced in both momentum and energy balances, there is a need to
consider two distinct, spatially varying time step distributions.

An algorithm which allows each degree of freedom to advance in time according to its own
local time step, whilst interpolated results are periodically outputted at fixed times, is used
[10,11]. The algorithm begins with all degrees of freedom acti6e and with variables defined at
time tn. Then, it proceeds as follows:

(a) Set element time steps for velocity and pressure using the corresponding Re and element
time steps for temperature using the corresponding Pe.
(b) Project the element time step values onto mesh nodes, obtaining nodal time step
distributions for ûa, p̂ and u. .
(c) Choose an interpolation time step Dtint, between the minimum (Dtmin) and the maximum
(Dtmax) time scales.
(d) Define the interpolation time level tint= tn+Dtint.
(e) Solve Equations (21), (22) and (24) for the acti6e degrees of freedom using the respective
nodal time step distributions.
(f) Interpolate on the time domain, the degrees of freedom whose tracked time has exceeded
tint and freeze their interpolated values at tint. These degrees of freedom are temporarily
removed from the list of acti6e variables and treated as pseudo boundary conditions for the
problem defined in terms of the remaining acti6e variables.
(g) Are there any acti6e variables left?

If yes
(g1) Recompute the local time steps for the remaining acti6e variables and return to

step (e).
Else

(g2) Output the solution at tint.
(g3) Release the inacti6e (frozen) degrees of freedom.
(g4) Redefine tn= tint and return to step (a).

End if.

The process continues until the required analysis time interval has been covered. Note that
the extra bookkeeping needed for tracking each degree of freedom time position pays off in
computational effort, for degrees of freedom associated with larger time steps are updated less
frequently than those associated with smaller ones. The algorithm described above leads to a
weighting function adaptive method, where the local time step is adjusted according to the
local velocity, physical properties and mesh size, aiming to optimise the approximation on a
given mesh.

4. ADAPTIVE REMESHING

Much progress has been achieved in the field of finite element mesh adaptivity. The rapid
development is both a consequence of the research on error estimates [9,16] and of the
availability of mesh generator routines capable of using the error data to build improved
meshes [17,18].

Note that a remeshing scheme concerns only the spatial discretisation. However, when
dealing with transient processes, the overall error in the solution is associated, not only to the

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO296

spatial discretisation, but also to the time integration of the governing equations. Thus, some
form of time step adaptation is necessary as far as a transient analysis is concerned.

In this work, the a posteriori error estimator proposed by Zienkiewicz and Zhu [9] is used
to estimate the velocity gradient error and to guide the remeshing. The local time stepping
algorithm is used in conjunction with the remeshing scheme. This permits the linking of spatial
and time step refinement through Equation (28), and naturally leads to a simultaneous
time–space adaptive procedure. Indeed, whenever the remeshing scheme creates some local
refinement to better resolve a particular flow feature, the time step distribution is also adapted
accordingly, so that the corresponding time evolution can be appropriately followed.

The velocity gradient error is estimated according to

EV=
�&

V
(9ua*−9ûa)(9ua*−9ûa) dV

n1/2

, (31)

where 9ûa is the discontinuous gradient computed directly from the analysis and 9ua* is the
smoothed gradient obtained by least-squares projection of 9ûa onto the C0 finite element basis
[8].

The following measures of the velocity gradient SV and the relative error h can be defined
as:

SV=
�&

V
9ua*9ua* dV

n1/2

, (32)

h=
EV

SV
. (33)

If Vi is the subdomain associated with a typical element i, the corresponding element error
is

eVi
=
�&

Vi

(9ua*−9ûa)(9ua*−9ûa) dV
n1/2

. (34)

The domain error given by Equation (31) is related to the individual element errors
according to

EV
2 = %

m

i=1

eVi

2 , (35)

where m is the number of elements in the mesh. Thus, one can compute the average error per
element ēm as

ēm=
EV


m
(36)

or, in terms of the relative error h,

ēm=h
SV


m
. (37)

The remeshing scheme is based on the concept of generating a new mesh in such a way that
the error will become uniformly distributed among the new elements. This requires defining a
target error per element and leads to various alternative strategies.

In a previous work [8], Zienkiewicz and Zhu [9] were followed and Equation (37) was to set
the remeshing target error per element according to the user-prescribed aimed analysis quality

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 297

h̄. Such an approach focused on keeping a nearly constant error level, while letting the number
of elements vary. In the remeshing procedure presented next, the priority is somewhat reversed.
In fact, the error level is allowed to be adjusted during the analysis according to a user-defined
maximum allowable number of elements. This seems to be more budget-oriented than the
previous implementation, where an excessive number of elements was sometimes created.

Suppose that through a remeshing scheme, starting with a coarse mesh containing m
elements, one could obtain a refined mesh with m % elements, such that m %\m. Further assume
that the refined mesh is optimal in the sense that the error is evenly distributed among the m %
elements. Then, using Equation (36), the ratio between the average error per element measured
on such meshes is

ēm%/ēm=
mE %V/
m %EV. (38)

Noting that the domain error in the refined optimal mesh is smaller than that on the coarse
mesh, it is concluded that

ēm%/ēm=
m/
m¦, for some m¦\m %. (39)

In view of the above remarks, the following target error per element is chosen for remeshing

ēt=
' m

m¦
ēm, (40)

where m %% is the user-prescribed maximum number of elements, m is the number of elements
in the current mesh and ēm is the average error per element measured on the current mesh.

For the linear elements employed in the computation, it is assumed the individual element
errors are proportional to the corresponding element sizes. Thus, the new element size
distribution required to attain the target error ēt can be defined on every element of the new
mesh.

The new element size distribution can be expressed in terms of the element sizes and errors
on the current mesh and of the uniform target error ēt aimed for the new mesh as

hi
k+1=hi

k ēt

eVi

, for i=1, . . . , m (41)

where k+1 and k denote the new and the current mesh respectively.
In some applications it is necessary to limit the minimum acceptable element size (hmin) as

the time step computed from Equation (28) may become too small for an affordable
computation.

Equation (41) gives a piecewise continuous element size distribution for the new mesh, which
is defined on the current mesh. The mesh generator used in this work requires the element size
distribution to be continuous and defined on the nodes of a specified background mesh.
Therefore, the size distribution given by Equation (41) is projected to the nodes of the current
mesh via least-squares smoothing, and then transferred to the background mesh nodes.

A Delaunay mesh generator is employed to construct meshes composed of triangular
elements. The problem is defined on a initial mesh containing boundary and initial condition
data. This initial mesh is used as the background mesh, from which all subsequent meshes will
be generated by the insertion of new points and the application of Bowyer’s algorithm [19] to
connect the newly created points in a Delaunay triangulation. In the remeshing procedure
adopted in this work, the background mesh is indeed a computational mesh, which is actually
used to start the computation.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO298

The automatic remeshing is controlled by the variation of the relative error given by
Equation (33). A new mesh is constructed whenever the relative error varies more than 1%
during the transient analysis.

4.1. Transferring field data to a newly created mesh

An important aspect in a remeshing procedure concerns the interpolation of field data
between two consecutive computational meshes. The problem of transferring data between
meshes is illustrated in Figure 1, where the determination of field values at a node on the new
mesh requires the interpolation of variable values that are only available on the old mesh.

Referring to Figure 1, let u be a generic variable. Then, the simplest way to compute u at
point P is through a linear interpolation based on the old mesh element shape functions, i.e.

ûp=Nkuk, (42)

where uk are nodal values on the old mesh and Nk are the corresponding linear shape functions
evaluated at point P.

However, the use of the above equation to transfer field data is inadequate for transient
problems involving a large number of computational meshes. Indeed, the repeated use of
Equation (42) introduces spurious dissipation in the numerical analysis [8]. Instead, a low-/
high-order interpolation scheme, similar to that presented by De Sampaio et al. [8], is adopted.

A second-order correction to Equation (42) can be constructed using the smoothed gradients
of u, obtained by least-squares projection of the piecewise constant gradients available from
the finite element analysis.

The smoothed gradients are linear functions defined on each old mesh element according to

Figure 1. Field values at the new mesh node P are interpolated using data stored on the old mesh nodes i, j, k.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 299

(u*
(x

=Nj

�(u*
(x

�
j

, (43)

(u*
(y

=Nj

�(u*
(y

�
j

, (44)

where ((u*/(x)j and ((u*/(y)j are smoothed gradients nodal values.
From the above equations, the following second-order derivatives of u, which are constant

within each old mesh element, can be defined:�(2u*
(x2

n
e

=
(Nj

(x
�(u*
(x

�
j

, (45)

� (2u*
(x (y

n
e

=
� (2u*
(y (x

n
e

=
1
2
!(Nj

(x
�(u*
(y

�
j

+
(Nj

(y
�(u*
(x

�
j

"
, (46)

�(2u*
(y2

n
e

=
(Nj

(y
�(u*
(y

�
j

. (47)

A second-order interpolation scheme is obtained, adding a correction term to Equation (42).
The correction vanishes if point P coincides with an old mesh node. The resulting interpolation
satisfies the above second-order derivatives within the old mesh element and is given by

ũp= ûp+Dup, (48)

where

Dup= f(xp, yp)− %
j=3

j=1

Nj(xp, yp)f(xj, yj), (49)

f(x, y)=
1
2
!�(2u*
(x2

n
e

x2+2
� (2u*
(x (y

n
e

xy+
�(2u*
(y2

n
e

y2", (50)

and xp, yp are the Cartesian co-ordinates of point P.
In some instances, it may be convenient to leave some numerical dissipation in the

interpolation procedure by not fully introducing the correction term. The low-/high-order
interpolation scheme is written as:

ũp= ûp+o Dup, (51)

where o varies from 0, the linear case, to the fully corrected scheme for o=1.
Recall that the element sizes in any mesh generated, are constrained by the prescribed

minimum size hmin. The linear scheme is used when interpolating data within such tiny
elements. This is done in order to damp the contributions from spatial scales that cannot be
resolved on the computational meshes used during the analysis. On the other hand, the
quadratic procedure is employed when interpolating within elements larger than the prescribed
minimum size.

4.2. Searching procedures

Many operations described above depend on finding the element that contains a point given
by its co-ordinates. If not carefully programmed, these search operations become quite CPU
consuming, and may severely undermine the overall code performance.

The neighbour-to-neighbour search algorithm, as shown in Figure 2, is used in this work
[17]. According to Löhner [20], provided a close enough starting element is given to initiate the

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO300

Figure 2. The neighbour-to-neighbour search algorithm. The area co-ordinates Li, Lj and Lk of element E are
evaluated at the searched point M. Here, Li(M)=min(Li(M), Lj(M), Lk(M)) and the next element to be checked is

Ei. The algorithm is repeated until the element containing point M is found.

search, this algorithm, though scalar, out-performs other vectorised procedures. A simple data
structure has been devised to guarantee that the searches required in the computations always
start from a close element. Because all meshes produced are obtained by refinement of the
same background mesh, the elements of the background mesh can be used as regions to which
all points and elements are referred. Thus, if the point being searched is associated with a given
background region, one must ensure that the starting element for the search belongs to the
same region. The neighbour-to-neighbour algorithm works well for convex regions but may
eventually fail otherwise. Thus, a vectorised search on all elements has been programmed as a
fall-back position. This is activated whenever the neighbour-to-neighbour scheme fails to find
the desired point after visiting 20 elements.

5. THE PARALLEL/VECTOR ITERATIVE SOLVER

Provided the mesh generator and the searching routines are programmed efficiently, the
updating of variables is the most time consuming operation in the whole analysis. The
updating of the velocity, pressure and temperature fields demands the cyclic solution of four
symmetric positive definite systems of equations. These systems are solved using a Jacobi
preconditioned EBE conjugate gradient (CG) method [13].

Note that sparse matrix–vector multiplications are required during the CG computation.
Due to the local nature of finite element approximation, the sparse matrix–vector product can
be recast as

Ax= %
nel

e=1

Aexe, (52)

where nel is the current number of elements in the mesh. Thus, the computations involve only
the element matrices, without the burden of assembling and handling large global sparse
matrices.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 301

The implementation of the EBE matrix–vector multiplication follows the three-step
algorithm:

for each element e do

GATHER x e from x
v e=Aex eCOMPUTE

v =v+v eSCATTER+ADD

end do.

The above algorithm has a great potential for vectorisation and parallelisation since the
GATHERand COMPUTEsteps can be performed independently from the other elements. However,
the SCATTER+ADD step involves a write operation on a global array. For adjacent elements,
write operations are performed on shared addresses in v. Therefore, the SCATTER+ADD opera-
tions can only be performed concurrently within a group of non-adjacent elements. Groups of
non-adjacent elements can be constructed, reordering the elements before starting the compu-
tations by a mesh colouring algorithm, producing a pattern like the one shown in Figure 3.
The element grouping requires a small fraction of CPU time and is performed before starting
computations on the current mesh. Note, though, that the local time stepping scheme used in
this work implies variable lists of active elements and degrees of freedom. Therefore, prior to
each CG solution, the groups are edited to extract the current active elements. The EBE
computations within a group (colour) can be readily vectorised and distributed for multiple
processors using the autotasking facilities available in Cray machines. This approach yields
vector lengths of the size of the current number of elements in a group. Consequently, the
colouring algorithm should attempt to produce groups with approximately the same number
of elements. It is important to note that storage requirements in the EBE scheme are

Figure 3. Multicolour grouping of finite elements.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO302

directly proportional to the number of elements in the mesh. Further, one does not evaluate
and store the element matrices. Actually, the action of the element is computed on the product.
Thus, geometric factors, shape functions etc., are recomputed as they are needed. The resulting
solution strategy keeps storage at a minimum and is a parallel/vector, matrix-free method.

6. NUMERICAL EXAMPLES

The techniques described above have been applied to the analysis of free and forced convection
incompressible flows. Free convection examples include the problem of thermal stratification
inside a square cavity and the simulation of the external flow generated around a hot
horizontal pipe. Also presented is the simulation of a confined forced convection flow through
a tube bank, with special emphasis on assessing the program parallel/vector performance on
the Cray J90.

6.1. Free con6ection examples

For the sake of convenience, the governing equations in non-dimensional form are consid-
ered. The relationship between the dimensional and the non-dimensional variables is defined as
xa%=xa/L ; t %=mt/r0L2; ua%=r0uaL/m ; u %=u/Du and p %=r0pL2/m2, where Du and L are the
reference temperature difference and the reference length scale for the problem considered.

The governing equations can thus be recast in the non-dimensional form

(u %a
(t %

+u %b
(u %a
(x %b

−
(

(x %b

�(u %a
(x %b

+
(u %b
(x %a

�
+
(p %
(x %a

+Gr gau %=0, (53)

(u %a
(x %a

=0, (54)

Pr
�(u %
(t %

+u %b
(u %

(x %b

�
−
(

(x %b

�(u %
(x %b

�
=0. (55)

In the above equations, ga=ga/��g�� indicates the gravity field direction and Gr and Pr are
respectively, the Grashof and the Prandtl numbers

Gr=
r0

2bgDuL3

m2 , (56)

Pr=
cm

k
. (57)

6.1.1. Thermal stratification in a square ca6ity. The fluid contained in a square cavity is
initially at rest and in thermal equilibrium when a sudden temperature difference Du is applied
and maintained between the vertical walls. The temperature at the left wall is increased by
0.5Du, whilst the temperature at the right wall is decreased by the same amount. The resulting
buoyancy forces initiate a internal free convection flow, which leads to thermal stratification
within the cavity.

Du and the height of the cavity, L, have been chosen as the characteristic scales for
non-dimensionalising the analysis. Plate 1 and Figure 4 illustrate the transient simulation,
covering the time interval from t %=0 to t %=0.5, for Gr Pr=106 and Pr=0.72.

The initial mesh comprised 441 nodal points and 800 elements. The transient analysis
required 3128 time steps to reach the final time. A total number of 144 meshes have been

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 303

Figure 4. Free convection inside a square cavity: mesh and velocity field at t %=0.5.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



Plate 1. Free convection inside a square cavity: non-dimensional temperature field at t %=0.05 (top) and t %=0.5
(bottom).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29(3) (1999)



Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29(3) (1999)

P
la

te
2.

F
re

e
co

nv
ec

ti
on

ar
ou

nd
a

ho
t

pi
pe

:
no

n-
di

m
en

si
on

al
te

m
pe

ra
tu

re
fi

el
d

at
(a

)
t%

=
0.

00
4,

(b
)

t%
=

0.
02

0,
(c

)
t%

=
0.

04
0,

(d
)

t%
=

0.
08

0.



Plate 3. Simulation of a confined cross-flow past a tube bank: mesh at t=8d/u0 (top) and corresponding
non-dimensionalised temperature (bottom).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29(3) (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO304

Figure 5. Free convection around of a hot pipe: mesh at t %=0.004 (left) and at t %=0.060 (right).

automatically constructed during the computation. The number of nodes and elements in the
final mesh are 1239 and 2264 respectively.

The CPU time for a single processor vector run on the Cray J90 was 2682 s. A sustained job
performance of 78 Mflops has been achieved in this run, which includes the generation of files
for CEA Ensight, the visualisation package available in the system.

6.1.2. Free con6ection around a hot pipe. This example shows the external free convection
flow that develops around a hot horizontal pipe. The temperature at the pipe surface exceeds
that of the surrounding fluid by Du. The characteristic temperature scale for this analysis is Du,
whilst the pipe diameter is chosen for the length scale.

Plate 2 and Figures 5 and 6 illustrate this simulation. The transient analysis was run from
t %=0 to t %=0.08, with Gr Pr=105 and Pr=0.72.

The initial mesh comprised 700 nodes and 1304 elements. The number of time steps required
to reach the final time was 1979, and a total of 351 adaptive meshes have been automatically
constructed during the computation. The final mesh contains 2218 nodes and 4250 elements.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 305

The CPU time for a single processor vector run on the Cray J90 was 2418 s, with a sustained
job performance of 66 Mflops.

6.2. Simulation of cross-flow past a tube bank

The simulation of cross-flow past a tube bank is presented here. The fluid is confined
between two horizontal plates, which directs the flow towards a regular array of 5×5
cylinders. The pitch-to-diameter ratio is p/d=1.33, and the ratio between the plates’ distance
l and the diameter d is l/d=6.65. A uniform velocity profile u0 is assumed at the flow entrance
and free traction boundary conditions are imposed at the outflow. The Reynolds number,
defined by u0 and l, is Rl=665 and the Prandtl number is Pr=1. No-slip boundary conditions
are imposed on all solid surfaces. The non-dimensionalised temperature at the inlet is u*=0,
whilst the temperature at the surface of the cylinders is fixed at u*=1. The initial fluid
temperature is u*=0.

The transient analysis was run from t=0 to t=20d/u0. A total number of 499 adaptive
meshes have been automatically constructed. The maximum number of elements prescribed for
remeshing was m %%=40000 and the prescribed minimum characteristic element size was
he=0.02d. The average number of elements and degrees of freedom per mesh was approxi-

Figure 6. Free convection around a hot pipe: detail of the velocity field at t %=0.060.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO306

Figure 7. Simulation of a confined cross-flow past a tube bank; velocity field at t=2.5d/u0 (top) and at t=11d/u0

(bottom).

mately 25000 and 50000 respectively. The transient analysis required 11140 time interpolation
steps Dtint. Some results of this simulation are shown in Plate 3 and Figure 7. Figure 8 depicts
the evolution of the number of elements per adapted mesh.

The parallel/vector performance on the Cray J90 has been analysed, trying to follow as
much as possible, the guidelines from Crowl [21]. The basic variables for the performance
measurements are flops rate and speed-up factor. The flops rates are evaluated using Cray’s
tools, the hardware performance monitor (hpm) and the profiling tool (perf6iew) on a single
CPU version of the code, where vectorisation is the main issue. Parallel speed-up is evaluated
by the atexpert tool during a four CPU run.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 307

Figure 8. Evolution of the number of elements in the adapted meshes employed during the simulation of cross flow
past a tube bank.

The CPU time of the vectorised single processor run was 54.5 h. The sustained job
performance on this run was 109.3 Mflops, indicating a highly efficient vectorised code. A
computational intensity (ratio of flops to memory references) of 2.23 was achieved during the
analysis, a value that is considered to be very good by the perf6iew tool. Table I presents the
Mflops rates obtained for the most relevant inner kernels during the single CPU run. In this
table, sol6pr and sol6el represent the conjugate gradient updating of pressure and velocity
respectively; mshcol is the mesh colouring algorithm that performs only integer operations;
newpts is the point creation routine used in the mesh generator procedure.

Computational costs are dominated by the pressure update, which requires the solution of
the discretised Poisson equation (24). The updating of velocity and temperature also involves
the solution of linearised equation systems, but is less expensive. This occurs because the last
available solutions are used to start the CG, whilst closely following the time scales of the
momentum and energy convection–diffusion processes.

Even though a total of 499 meshes have been generated during the transient, the cost of
mesh generation, mesh colouring, data transfer between meshes (including searching routines)
and writing of visualisation files represent only 11% of the overall solution cost.

Table I. Performance summary (1 CPU)

Routines % CPU time Mflops

76.3sol6pr 91.7
0.0mshcol 7.8

sol6el 99.92.3
144.52.1newpts

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



P.A.B DE SAMPAIO AND A.L.G.A. COUTINHO308

Regarding the parallel performance in four CPUs, the atexpert tool predicts a speed-up of
3.4 for a dedicated run.

7. CONCLUDING REMARKS

An adaptive parallel/vector finite element procedure for the simulation of incompressible
viscous flows with heat transfer has been presented. The algorithm involves space and time
adaptation in unstructured meshes. According to Simon [22], the class of dynamic implicit
unstructured computation is the hardest among parallel applications. In spite of such diffi-
culties, good performance was achieved in the simulation of free and forced convection flows
on the Cray J90.

It has been observed that linear equation solving is responsible for most of the CPU time.
The CG procedure is completely vectorised and parallelised through the use of the matrix-free
EBE scheme. On the other hand, the sequential part of the code is very fast. In particular, the
local search procedure, based on the neighbour-to-neighbour algorithm described in Section
4.2, has proven to be reliable in all simulations performed.

It is worth stressing that the numerical methods presented here for 2D laminar flows,
naturally extend for the simulation of 3D problems and for the computation of turbulent flows
using Reynolds-averaged equations.

ACKNOWLEDGMENTS

The authors kindly acknowledge the Centre for Parallel Computation of COPPE/UFRJ for
the use of the Cray J90. This work is partially sponsored by CNPq Grant No. 520589/95-5.

REFERENCES

1. K.W. Morton, ‘Generalised Galerkin methods for steady and unsteady problems’, in K.W. Morton and M.J.
Baines (eds.), Numerical Methods for Fluid Dynamics, Academic Press, New York, 1982, pp. 1–32.

2. J.C. Heinrich, P.S. Huyakorn, O.C. Zienkiewicz and A.R. Mitchell, ‘An upwind finite element scheme for
two-dimensional convective transport equations’, Int. J. Numer. Methods Eng., 11, 131–143 (1977).

3. A. Brooks and T.J.R. Hughes, ‘Streamline upwind/Petrov–Galerkin formulations for convection dominated flows
with particular emphasis on the incompressible Navier–Stokes equations’, Comp. Methods Appl. Mech. Eng., 32,
199–259 (1982).

4. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, NY, 1991.
5. T.J.R. Hughes, L.P. Franca and M. Ballestra, ‘A new finite element formulation for computational fluid

dynamics: V. circumventing the Babus' ka–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes
problem accommodating equal-order interpolations’, Comp. Methods Appl. Mech. Eng., 59, 85–89 (1986).

6. P.A.B. de Sampaio, ‘A Petrov–Galerkin formulation for the incompressible Navier–Stokes equations using
equal-order interpolation for velocity and pressure’, Int. J. Numer. Methods Eng., 31, 1135–1149 (1991).

7. O.C. Zienkiewicz and J. Wu, ‘Incompressibility without tears—how to avoid restrictions of mixed formulation’,
Int. J. Numer. Methods Eng., 32, 1189–1203 (1991).

8. P.A.B. de Sampaio, P.R.M. Lyra, K. Morgan and N.P. Weatherill, ‘Petrov–Galerkin solutions of the incompress-
ible Navier–Stokes equations in primitive variables with adaptive remeshing’, Comp. Methods Appl. Mech. Eng.,
106, 143–178 (1993).

9. O.C. Zienkiewicz and J.Z. Zhu, ‘A simple error estimator and adaptive procedure for practical engineering
analysis’, Int. J. Numer. Methods Eng., 24, 337–357 (1987).

10. P.A.B. de Sampaio, ‘Transient solutions of the incompressible Navier–Stokes equations in primitive variables
employing optimal local time stepping’, in C. Taylor (ed.), Proc. 8th Int. Conf. on Numerical Methods for Laminar
and Turbulent Flow, vol. 8, Pineridge Press, Swansea, UK, 1993, pp. 1493–1504.

11. P.A.B. de Sampaio and A.L.G.A. Coutinho, ‘Parallel/vector finite element simulation of coupled flow and heat
transfer’, Proc. 16th Iberian Latin American Conference on Computational Methods for Engineering, Curitiba,
Brazil, 1995, pp. 1401–1410.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)



NUMERICAL SIMULATION OF COMPLEX FLOWS 309

12. T.J.R. Hughes, R.M. Ferencz and J.O. Hallquist, ‘Large scale vectorized implicit calculations in solid mechanics
on a CRAY X-MP/48 utilising EBE preconditioned conjugate gradients’, Comp. Methods Appl. Mech. Eng., 61,
215–248 (1987).

13. A.L.G.A. Coutinho, J.L.D. Alves, L. Landau and N.F.F. Ebecken, ‘Avaliação de estratégias computacionais pare
o método dos elementos finitos em computadores vetoriais’, Re6. Int. de Met. Num. para Calculo y Diseño en
Ingenieria, 9, 271–297 (1993).

14. T.J.R. Hughes, ‘Recent progress in the development and understanding of SUPG methods with special reference
to the compressible Euler and Navier–Stokes equations’, Int. J. Numer. Methods Fluids, 7, 1261–1275 (1987).

15. T.J.R. Hughes, ‘Multiscale phenomena: Green’s functions, subgrid scale models, bubbles, and the origins of
stabilized methods’, Proc. 9th Int. Conf. on Finite Elements in Fluids, Venezia, Italia, 1995, pp. 99–114.

16. I. Babus' ka, O.C. Zienkiewicz, J. Gago and E.R.A. Oliveira, Accuracy Estimates and Adapti6e Refinements in Finite
Element Computations, Wiley, New York, 1986.

17. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, ‘Adaptive remeshing for compressible flow computa-
tions’, J. Comp. Phys., 72, 449–466 (1987).

18. N.P. Weatherill, ‘A method for generating irregular computational grids in multiply connected planar domains’,
Int. J. Numer. Methods Fluids, 8, 181–197 (1988).

19. A. Bowyer, ‘Computing Dirichlet tessellations’, Comp. J., 24, 162–166 (1981).
20. R. Löhner, ‘Robust, vectorized search algorithms for interpolation on unstructured grids’, J. Comp. Phys., 118,

380–387 (1995).
21. L.A. Crowl, ‘How to measure, present and compare parallel performance’, IEEE Parallel Distrib. Technol., Spring,

9–25 (1994).
22. H.D. Simon, ‘High performance computing: architecture, software and algorithms’, NAS Report RNR–93-018,

NASA Ames Research Center, 1993.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 289–309 (1999)


